Epidermal growth factor triggers an original, caspase-independent pituitary cell death with heterogeneous phenotype.
نویسندگان
چکیده
Programmed cell death (PCD) is physiologically involved in the regulation of cell division and differentiation. It encompasses caspase-dependent mitochondrial and nonmitochondrial pathways. Additional caspase-independent pathways have been characterized in mitochondrial PCDs but remain hypothetical in nonmitochondrial PCDs. Epidermal growth factor (EGF) has been shown to inhibit division of pituitary somato-lactotrope cells occurring in parallel with EGF-mediated differentiation of these precursors into lactotrope cells. We show here that in somato-lactotrope pituitary cell line GH4C1, EGF triggers a PCD characterized by an apoptosis-like DNA fragmentation, insensitivity to broad-range caspase inhibitors, and absence of either cytochrome c or apoptosis-inducing factor release from mitochondria. Dying cells display loose chromatin clustering and numerous cytoplasmic vacuoles, a fraction of which are autophagic, thus conferring a heterogeneous phenotype to this PCD. Moreover, overexpression of cell death inhibitor Bcl-2 prevented not only the EGF-induced PCD but also its prodifferentiation effects, thus pointing to a mechanistic relationship existing between these two phenomena. Overall, the characterized differentiation-linked cell death represents an original form of caspase-independent PCD. The mechanisms underlying this PCD involve combinatorial engagement of discrete death effectors leading to a heterogeneous death phenotype that might be evolutionary related to PCD seen during the differentiation of some unicellular organisms.
منابع مشابه
Inhibition of integrin-mediated crosstalk with epidermal growth factor receptor/Erk or Src signaling pathways in autophagic prostate epithelial cells induces caspase-independent death.
In vivo in the prostate gland, basal epithelial cells adhere to laminin 5 (LM5) via alpha3beta1 and alpha6beta4 integrins. When placed in culture primary prostate basal epithelial cells secrete and adhere to their own LM5-rich matrix. Adhesion to LM5 is required for cell survival that is dependent on integrin-mediated, ligand-independent activation of the epidermal growth factor receptor (EGFR)...
متن کاملLens Epithelium-Derived Growth Factor Is an Hsp70-2 Regulated Guardian of Lysosomal Stability in Human Cancer
Heat shock protein 70-2 (Hsp70-2) is a chaperone protein essential for the growth of spermatocytes and cancer cells. Here, we show that Hsp70-2 depletion triggers lysosomal membrane permeabilization and cathepsin-dependent cell death and identify lens epithelium-derived growth factor (LEDGF) as an Hsp70-2–regulated guardian of lysosomal stability in human cancer. Knockdown of LEDGF in cancer ce...
متن کاملCorrection: Lens Epithelium-Derived Growth Factor Is an Hsp70-2 Regulated Guardian of Lysosomal Stability in Human Cancer.
Heat shock protein 70-2 (Hsp70-2) is a chaperone protein essential for the growth of spermatocytes and cancer cells. Here, we show that Hsp70-2 depletion triggers lysosomal membrane permeabilization and cathepsin-dependent cell death and identify lens epithelium-derived growth factor (LEDGF) as an Hsp70-2-regulated guardian of lysosomal stability in human cancer. Knockdown of LEDGF in cancer ce...
متن کاملPhenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model
The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...
متن کاملPhenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model
The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 15 11 شماره
صفحات -
تاریخ انتشار 2004